
Bolt on some Crypto
Michael Samuel @mik235 https://miknet.net/
Ruxcon 2014

Securing The Network - TLS & SSH

IETF Standards:
SSH - RFC 4250-4255
➢ Remote shell
➢ File transfer
➢ TCP port forwarding, socks proxy
➢ Pipe commands over ssh (stdin/stdout)
➢ Originally a replacement for BSD r-commands

TLS - RFC 5246.
➢ https://
➢ Optional for SMTP, IMAP, POP3, XMPP, LDAP

TLS & SSH - Cryptographic Services

➢ Authentication
○ more to come on this...

➢ Integrity
○ Any tampering with the connection will be

detected
○ Limitation: attacker can drop the session
○ Limitation: DoS

➢ Privacy
○ Cannot see contents of session
○ Limitation: traffic analysis (aka metadata)

Public Key Cryptography Primer

Keypair:
Private Key - This key must be kept safe! Don’t email me your
private key!

Public Key - This key can be shared with anyone you need to
communicate with

Signing:
The Private Key is used to sign a hash of a message, which can be verified
by anyone with the public key

Encryption:
The Public Key is used to encrypt a message, which only the holder of the
Private Key can decrypt

MiTM Attack

“Man-in-the-middle attack”
(The actual attack isn’t gender specific)

1. Intercept client connection and answer like a server.
2. Connect to the real server (optional)
3. Log or modify data as it passes through

https://openclipart.org/detail/151741/ninja-working-at-desk-by-hector-
gomez

https://openclipart.org/detail/151741/ninja-working-at-desk-by-hector-gomez
https://openclipart.org/detail/151741/ninja-working-at-desk-by-hector-gomez
https://openclipart.org/detail/151741/ninja-working-at-desk-by-hector-gomez

MiTM Attack - Linux Quickstart
➢ iptables -t nat -A PREROUTING -p tcp --dport 5222 -j \

REDIRECT --to-port 5002

➢ Run your client program, listening on 5002
➢ Route the traffic through your linux box using arpspoof, routing protocol
➢ If using dns spoofing, IP tables not required

To get the original dest IP:
In C:
getsockopt(s, SOL_IP, SO_ORIGINALDEST, &addr, &addrlen);

In Python:
packedDest = s.getsockopt(socket.SOL_IP, 80, 16)

(destPort,) = struct.unpack(">H", packedDest[2:4])

destHost = socket.inet_ntoa(packedDest[4:8])

SSH Host Keys

OpenSSH caches host keys:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@

StrictHostKeyChecking - on seeing a new host:
➢ yes - don’t connect
➢ no - cache host key and connect
➢ ask (default) - display the fingerprint and ask user

ssh-keyscan can collect host keys from remote systems -
allows you to pre-populate known_hosts

SSH Host Keys - API gotchas

JSch:
StrictHostKeyChecking=no won’t cache the host key!

Paramiko:
client.load_system_host_keys()
client.set_missing_host_key_policy(paramiko.RejectPolicy)

paramiko.WarningPolicy won’t cache the host key!

Just pre-populate /etc/ssh/ssh_known_hosts if using APIs -
no need for write access to known_hosts

SSH MiTM - you can do ‘em

Often StrictHostKeyChecking=no is set on
servers with unattended ssh sessions
➢ rsync jobs
➢ remote commands
OpenSSH still connects if the host key changed
and you’re using public key authentication!

A MiTM server could just accept pubkey auth
for any key (without knowing the key).

SSH Client Authentication

You can create a client keypair with ssh-keygen, then
add it to ~/.ssh/authorized_keys on remote hosts.
This can be put in kickstart/preseed files.

Even if the remote server is compromised your private key
should be safe, so you don’t need a fresh one for each
server you connect to.

You can do “two-factor” in OpenSSH with the
AuthenticationMethods sshd_config option.

TLS - X.509 Certificates

Certificate chain from my website:
 0 s:/CN=www.miknet.net
 i:/CN=StartCom Class 1 Primary Intermediate Server CA
 1 s:/CN=StartCom Class 1 Primary Intermediate Server CA
 i:/CN=StartCom Certification Authority

StartCom Certification Authority is trusted by my system

Subject: the entity identified by the certificate
Issuer: the authority that signed the certificate

Domain Validated: demonstrated control of the domain to CA
Extended Validation: demonstrated that you are the organisation and
domain holder in the certificate

The unverified certificate

A Root CA is just a self-signed certificate
Intermediate CAs and the certificate are signed by their
parent CA

You can create an entire unverified chain using the
openssl command line. Only the
public key matters.

Even the most diligent support
staff would tell users to click
through.

Dialogs that shouldn’t exist

WARNING: TLS APIs suck

There are 3 types of TLS APIs:
➢ Go verify the certificate yourself

○ Generally OpenSSL or wrappers
➢ What’s a certificate?

○ High level abstractions over OpenSSL written by
programmers who don’t know/understand

○ all of the Python 2.x standard library
➢ We do what a web browser would

○ These are rare - python-requests.org, libcurl

TLS - Verifying the hostname

Most TLS libraries do not check that the certificate matches
the hostname - even if you turn on verification.

Should you trust a certificate for www.miknet.net when
accessing your online banking?

The hostname must match either the CN field or one of the
SubjectAltName extensions.
WARNING: NULL bytes are valid

Match the name the user requested, not DNS SRV/MX

http://www.miknet.net

STARTTLS
<?xml version='1.0' ?>
<stream:stream to='jabber.org' xmlns='jabber:client' xmlns:stream='http:
//etherx.jabber.org/streams' version='1.0'>
<?xml version='1.0'?>
<stream:stream xmlns='jabber:client' xmlns:stream='http://etherx.jabber.
org/streams' from='jabber.org' id='5ce74cfce8e91fc4' version='1.0'>
 <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

STARTTLS removed
<?xml version='1.0' ?>
<stream:stream to='jabber.org' xmlns='jabber:client' xmlns:stream='http:
//etherx.jabber.org/streams' version='1.0'>
<?xml version='1.0'?>
<stream:stream xmlns='jabber:client' xmlns:stream='http://etherx.jabber.
org/streams' from='jabber.org' id='5ce74cfce8e91fc4' version='1.0'>
 <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

STARTTLS removal

Don’t negotiate whether to encrypt over the
network!

➢ XMPP, IMAP, POP3, SMTP clients
➢ SMTP server-to-server always works
➢ Dell & Cisco BMCs that use the Avocent

KVM stack (PoC||GTFO 0x5)
➢ HTTP (sslstrip by Moxie)

Forward Secrecy

Ephemeral Key Exchange is another form of public key
cryptography

➢ Protocols: Diffie-Hellman or Elliptic Curve Diffie-Hellman
➢ Known as: Forward Secrecy or PFS
➢ TLS Ciphersuits that start with DHE- or ECDHE-
➢ The SSLv3 ciphersuites use RSA encryption - if the

RSA key is stolen/cracked, past traffic can be
decrypted! (Wireshark supports this)

Forward Secrecy - TLS Ciphersuites
Apache:
SSLCipherSuite ...
SSLHonorCipherOrder on
SSLProtocol all -SSLv2 -SSLv3

Nginx:
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_prefer_server_ciphers on;
ssl_ciphers “...”;

5 Ciphers that have you covered (thanks to Kenn White):
ECDHE-RSA-AES256-GCM-SHA384 # Android 4.4+
ECDHE-RSA-AES128-SHA256 # IE 11
ECDHE-RSA-AES128-SHA # Android 4.x, Chrome/Firefox, IE8-10
DHE-RSA-AES128-SHA # Android 2
RC4-SHA # Old junk (Windows XP, Nokia 6xxx) RC4 MUST DIE!

TLS - Authenticating Clients

Originally SSL was for e-commerce. This only required
“money green” authenticity for clients.

TLS has support for client certificates

Apache/Nginx
Frontend

Backend application
(Servlet, PHP, etc)

Client Certificate
Authentication

Login Form
(Password Authentication)

Entropy

Most cryptography needs randomness, for both
short-term and long term keys.

The properties that are needed:
➢ Unable to predict future values
➢ Unable to recover past values

PRNGs work but need to be seeded from truly
unguessable events.

Not Entropy

➢ mt_rand()
○ Can recover all state from output.
○ Often a small input

➢ rand() / random()
○ Small input
○ Can recover some/all state from output

➢ rand_r() / qrand() / java.util.Random
○ Small input
○ Small state
○ Can recover some state from output

https://www.miknet.net/rux2013/

Entropy - Don’t fork it up

➢ Unix-like systems: read from /dev/urandom
○ Userland PRNGs probably not fork() safe

➢ Windows: CryptGenRandom for strong
entropy

➢ Linux early boot (only): /dev/random
○ Encrypted swap
○ SSH host key generation

Hash Functions - attack types

A fixed-length digest of variable length input

➢ (First)-Preimage resistance
○ Hard to find the original input from the hash
○ Guessing inputs still works!

➢ Second-Preimage resistance
○ Hard to find a second input that produces a given hash
○ An ideal hash function would provide 2hash length resistance to this

➢ Collision Resistance
○ Hard to find two inputs that produce the same hash
○ Birthday attack - requires 256-bit hash for 128-bit security
○ When a hash function is broken this is usually first to go

Hash Functions - attack examples

➢ If the attack controls multiple inputs, you
need to worry about collisions
○ rsync/librsync (see my github)
○ X.509 (TLS) certificates

➢ If the attacker controls one input, you need
to worry about second-preimage

Checksums and Signatures

For general use, you should use SHA-2 256/384/512
Creating a certificate:

openssl req -new -sha256 …
Checksum of a file:

sha256sum *.iso

blake2 - is a very fast and secure hash function - if
performance is critical.

Don’t use MD4/MD5 at all
SHA-1 should be phased out

Hash Tables

Wait, do these need to be
secure?!?
Worker pools or select() loops -
colliding hash table entries can block
the CPU!

SipHash was designed to
fix this
This is now the default in Python3,
Ruby, Perl

http://commons.wikimedia.org/wiki/File:Hashtable_linkedlist_collision.
png

Password Hashes

Normal hash functions allow you to make extremely fast
guesses - do not use these!
Salting
A salt is a unique string that is hashed with the password and stored next to the
hash.
➢ Mutliple users with the same password won’t have the same hash
➢ An attacker can’t pre-calculate passwords
Stretching
➢ An operation that makes the hashing deliberately slow
➢ Must be sure that attackers can’t take a shortcut

Current recommendation: bcrypt
Future recommendation: Winner of PHC - https://password-hashing.net/

Advanced Password Hashing - HSM

Passwords are still really weak!
Solar Designer: encrypt hashes with a HSM
● Near-perfect security if HSM is safe
● Better than nothing if HSM is stolen/broken
● Only requires encrypt function of HSM
Store:
salt, AES(bcrypt(password, salt))

Compare:
AES(bcrypt(password, salt)) == stored

http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/
http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/

http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/
http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/
http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/
http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/

Password Hashing - Remediation

If you store your passwords in cleartext - go
hash them all!

If you use an unsalted hash - use a password
hash on the original hash

Avoid HTTP Digest Authentication, NTLM,
CHAP.

MACs

If you need an untrusted entity to hold some state for you,
you can use a MAC

➢ Ensure your data cannot be used out of context
○ HKDF, or just separate keys

➢ The key needs to be secret and preferably random
➢ Timing attacks! Brad Hill’s trick:
HMAC(random, mac) == HMAC(random, HMAC(secret, data))

If the data needs to be encrypted MAC the ciphertext (EtM)

Hash functions aren’t MACs!

Most hash functions do not function as a MAC.

Bad:
tag = Hash(secret, message)
and send tag, message that person can then
perform a length extension attack.

Use HMAC when there’s a secret key

Homework

➢ Write a MiTM attack for TLS and/or SSH
➢ Try it against every connection that leaves

your machine
➢ File bug reports
➢ Code a length-extension attack
➢ cryptopals.com (if you like this stuff)

Thanks!

Comments/Questions?

Michael Samuel

Web https://www.miknet.net/

Twitter @mik235

GitHub therealmik

